MATLAB優化應用
- 文件介紹:
- 該文件為 doc 格式,下載需要 1 積分
- MATLAB優化應用,機械設計必須的入門資料§1 線性規劃模型
一、線性規劃課題:
實例1:生產計劃問題
假設某廠計劃生產甲、乙兩種產品,現庫存主要材料有A類3600公斤,B類2000公斤,C類3000公斤。每件甲產品需用材料A類9公斤,B類4公斤,C類3公斤。每件乙產品,需用材料A類4公斤,B類5公斤,C類10公斤。甲單位產品的利潤70元,乙單位產品的利潤120元。問如何安排生產,才能使該廠所獲的利潤最大。
建立數學模型:
設x1、x2分別為生產甲、乙產品的件數。f為該廠所獲總潤。
max f=70x1+120x2
s.t 9x1+4x2≤3600
4x1+5x2≤2000
3x1+10x2≤3000
x1,x2≥0
實例2:投資問題
某公司有一批資金用于4個工程項目的投資,其投資各項目時所得的凈收益(投入資金锪百分比)如下表:
工程項目收益表
工程項目 A B C D
收益(%) 15 10 8 12
由于某種原因,決定用于項目A的投資不大于其他各項投資之和而用于項目B和C的投資要大于項目D的投資。試確定全文該公司收益最大的投資分配方案。
建立數學模型:
設x1、 x2 、x3 、x4分別代表用于項目A、B、C、D的投資百分數。
max f=0.15x1+0.1x2+0.08 x3+0.12 x4
s.t x1-x2- x3- x4≤0
x2+ x3- x4≥0
x1+x2+x3+ x4=1
xj≥0 j=1,2,3,4
實例3:運輸問題
有A、B、C三個食品加工廠,負責供給甲、乙、丙、丁四個市場。三個廠每天生產食品箱數上限如下表:...